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SLENDER, AXISYI4ETRIC POWER BODIES

HAVING MINIMI! ZERO-LIFT DRAG IN HYPERSONIC FlEW

by

ARTHUR H. LUSTY, JR.

SUMMARY

In this paper, the problem of finding the slender power body of revo-

lution having minimum zero-lift drag in hypersonic flow in solved by di-

rect methods. A constant friction coefficient is assumed, and both the

Newtonian impact law and the Newton-Busemann law are employed to provide

the distribution of pressure coefficients over the body. A generalized

optimum condition is found in deteruinantal form under the assumption that

any two arbitrary functions of the diameter, the length, the wetted area,

the volume, and the exponent of the power body are prescribed. After theme

constraints are specified explicitly, particular problems are solved; it is

found that, in all cases where the wetted area is not prescribed, the shape

of the optimum power body is strongly dependent on the friction coefficient*

For the Newtonian impact case, the power body solutions of this report are

compared with the variational solutions of Refs. 1 and 2 in the range of

values of the friction parameter for which the variational solution includes

a single subarc only. It is found that the drag of the optimm power body

approximates closely that of the variational solution body only in the cases

where the diameter is one of the prescribed quantities.

(*)Staff Associate, Astrodynamics and Flight Mechanics Group, Boeing
Scientific Research Laboratories*
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1. INTRODUCTION !

The problem of minimizing the zero-lift drag of a slender body of revo-

lution in hypersonic flow has recently received considerable attention for

the case where the pressure coefficient is assumed to satisfy the Newtonian

impact law and the friction coefficient is constant (Refs. 1 and 3). While

variational techniques have been employed in these references, it is the j
purpose of this paper to employ the ordinary theory of maxima and minima in

order to restudy these problems as well as to solve the new problems arising

from the use of the Newton-Busemann pressure coefficient law. This approach

by direct methods is possible if the function describing the longitudinal I
contour of the body is prescribed except for some undetermined constants.

In this connection, the class of power bodies is investigated, and the total

drag (the sum of the pressure drag and the friction drag) is minimized under j
several constraints. A key assumption for the Newton-Busemnn case is that

no flow separation occurs, that is, free layers are ruled out; this is pre- I
cisely the case with the power bodies as long as the exponent of the power

law is larger than a certain minimum value.

I
I
I!
I
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2. GENERALIZED PRESSURE COEFFICIENT IAW

For a slender body of revolution, the Newtonian pressure coefficient

I is given by (Refs. 1 through 4)

C - 2j 2  (1)
P

where x denotes a streamwise coordinate, y a normal coordinate, and the

dot sign a derivative with respect to x (Fig. 1). The Newton-Busemann pros-

sure coefficient for this body is written as (Ref.. 4 and 5)

Cpa -2j 2 + yy
I

Either of the above relations is a particular case of the following general-

ized pressure coefficient law:I
C p 2 (j2 + f3) (3)

where the parameter c has the values p * 0 for the impact @am and f - 1 for

the Newton-Busenann case.

I

I
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3. THE DRAG, THE WETT AREA, AND THE VOIE

Using the generalized pressure coefficient law of the previous seotion

and introducing a constant friction coefficient Cfe one obtains the follow- i
ing expression for the drag per unit dynamic pressure of the forebody of a J
slender body of revolution:

A I
DUWJ 1 7 + Y Y dX*+CfS 4q 0

where I is the length of the body and S is its wetted area. Under the 1
slender body approximation, the expression for the wetted area is written as

I

while the corresponding volume is given by

v f y2 dx (6)

If one restricts the analysis to power bodies of the form

Y (7)

where d is the diameter, the previous expressions can be integrated to yield I

i C6- (8)
q 16A 2L - IjfS
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I ~s d/( +1 (9)
I

V - ,d2 A/4(an. 1) (10)

provided n > 1/2. This limitation is necessary in both the Newtonian flow

model and the Newton-Busenann flow model in order to insure that the drag

contribution of the nose is finite. Incidentally, this inequality auto-

I mticafly insures that the pressure coefficient of the Newton-Buseann case

is positive everywhere along the contour,

I
I

1

I
I
!
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4. MINIMUM DRAG PROBLEM I
The problem considered here is that of minimizing the right-hand aide

of Eq. (8) with respect to all combinations of the quantities d, 1, S, V, a I
which satisfy the fundamental constraints having the form

S(n+ 1) - ntA 0

*2 4 4V(2n + 1) - "d2 A a0 1

as well as two additional constraints having the form i

#3- ,3(d, A, S, V9 .) - Coast a0 

4 w *4 (d, A, , V, n) - Const - 0

Since the number of variables is five and the number of constraints is four,

the problem admits one degree of freedom. Hence, the optimizing condition 1

can be reduced to the vanishing of only one Jacobian determinant, that of

the function to be extremized and the constraining functions with respect

to all the variables of the problem. This optimizing condition is given by 1
(Refs. 6 and 7)

I

and it. explicit form is
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jd 2 A#2

IThe five equations (U), (12), and (14) completely determine the got of

I variables d, As So VI, n which -mnimze Lhe total drag per vnit dymamic
Pressure.
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I
. PARTICMAR CASES

In this section, several sets of additional constraints having engineer.

in6 interest are specified, and the corresponding optimum shape& and mini- 3
mm values of the drag are caloulated. The representation of the results

is greatly facilitated if several nondimensional parameters are introduced* i
These parameters are the friction parameter Kf9 the thickness parameter

K and the drag parameter K 0 The definitions employed for those param.

etes depend on the particular problem and are presented in the pertinent

sections.

l.. Given Diameter and ITngth 1
If the diameter and the length are prescribed, the additional constraint.

are written as I

3 w d - Comet a 0 1

*4 a A - Couat 0 1

so that the generalized optimun condition (14) bome I

-(L j(a) Cf 0 -L(a

A -Id n+1 0 a 1
- v 0 4(2n + 1) 8v -0 (6)

1 0 0 0 0 1

0 1 0 0 0
I
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IThe expansion of this determinant yields the relationship

cis - ( D)An q(17)

vhere

d4 I8n3 - 6n2 + + 2n)] (

After Eqs. (9), (17), and (18) are combined, and after the friction pa-

I rameter is defined as

Cft (19)
I

the optimum condition becomes (Fig. 2)

K Ku (n + ) 2[2n(4n -3) + c(42 - 5n +2)] (0
f (Tn - 1)1

Furthermore, after Eqs. (8), (9), (19), and (20) are combined and after the

drag parameter is defined as
( *)

I

(*)This drag parameter is equal to the drag coefficient CD referred to

the frontal area divided by the square of the thickness ratio T = d/A.
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K 'a 4 2  (21)1D q7 (2.

I
the following functional relationship in obtained (Fig. 3)s 1

KD . KD(Kf, q) (22)

I
5.2. Given Diameter and Wetted Area

For the problem where the diameter and the vetted area are prescribed, I
the additional constraints become 3

3 - d - Conet a 0 3
(23)

$4 9S - Const - 0 3
These conditions in conjunction with the generalized optimum condition (14) 1
yield the optimum condition for this particular problem I

After this expression is combined with Eqs. (8) and (9), the following ex-

pression is obtained for the exponent of the optimm power body:

6n(n - 1) + t,(5n. . 5n + 2) a 0 (25) 3
I
I



Since the friction coefficient does not appear in this expression, one con-

cludes that friction has no effect on the shape which yields the uinimm

drag for given diameter and wetted area. For the impact law, the exponent

of the optimum power body is n - 1; for the Newton-Busemann law, the optim m

exponent is n . 0.761. For the impact law, the minimum drag per unit dy-

namic pressure and the assocIated thickness ratio are given by

!2
S.0.969-- + C'S T 1.5 71 (26)
q s

1 5.3. Given Diameter and Volume

When the diameter and the volume are prescribed, the subsidiary condi-

I tions are written as

I 3 r d - Const a 0

I 
4 M V - Const a 0 

(2)

and the general optimum condition reduces to

[ 28V( )2r C n0(9
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The length and wetted area are not prescribed for this problem so they

must be determined from the fundamental constraints, vhich lead to

4v 1+ ) a v 2n + (30).A --, (Zn+1) , 8 .T V n.1

After the friction parameter in defined as .

K Cf (31)
d

and considerable manipulations are performed, the optimum condition can be

expressed as follows (Fig. 4):

" f , , [2n(3 - 2 , - 06o2 -)] (32)45. (2n + 1)3(2n -1)2

If the drag parameter is defined as

DV3 V2  
(33q df 1d 1

a functional relationship of the form (22) can be shown to hold and is

plotted in Fig* 5. Finally, if the thickness parameter is defined as

K T v (4)



13

the volume constraint and the optimum condition lead to the funotional

relationship (Fig. 6)

K K I (K f ,  (.33)

5,4o Given Diameter and Exponent

For this case, the auxiliary constraints are written as

#3 w d - Const a 0

(36)
*4 w n - Const a 0

and, in conjunction with the generalized optimum condition, lead to the

jfollowing relationship:

(n (a 1) +TvCf -0 (37)

After the thickness parameter is defined as

K (38)

Cf

Eq. (37) can be shown to admit the solution

[(n 2 l)t2n' n' - )11 (39)
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which is plotted in Fig. 7. Incidentally, for the particular case of a I
cone, the optimum thickness ratio becomes

I
',.- 12c113 (40)

for both the impact and Newton-Busemann cases. If the drag parameter is

defined as I
D 4(41)I

and if the optimum condition (39) is combined with Eqs. (8) and (9), the

minimum drag can be expressed in the following dimensionless form (Fig. 8): i

Ln + 1) ('On - 1)1

For these optimum bodies, the friction drag is two-thirds of the total drag.

Furthermore, the drag parameter-exponent relationship exhibits a minim for

n u 1 in the impact case and n a 0.761 in the Newton-Busemnn case (Fig. 8).

These special values are those which would be obtained if the constraint on

the exponent were removed and the minimal problem problem solved for given

diameter only. i

i
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5.*5 Given Length and Wetted Area

For the minimum drag problem with given length and wetted area, the

additional constraints are written as follows:

*3 " 1 - Const a 0

(43)

4 " S - Const = 0

l
If the constraints and the generalized optimum condition are combined, the

exponent of the optimum power body is given by the following expressions

6n(4 2 - n - l) ,12n 3 - 13 -n+ 2) aO0 (44)

I
and leads to n a 0.60 for the impact law and to n = 0.606 for the Newton-

Busemann law. For the impact law, the minimum drag per unit dynamic preomne

and the associated thickness ratio are given b7!
D 0.o273S +Cf ,0.522 (45)

For the Newton-Busemann law, the analogous results are written as

0.0190 + cS, - 0.51L S (6)

As in the case of given diameter and wetted area, the optimum shapes are

the same as those found for the case where only the pressure drag in mini.

mized (Refs. 2 and 5).
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3,6* Given Length and Volume

For the case where the length and the volume are specified, the auxiliary

constraints are written as 3
3 E ' - Con"t a 0 1
#4 aV - Const a 0 (17)

and the generalized optimum condition can be expanded to give

Cft 4 niv - iwda] + (n + 1) [ -dj a 4v - 0 (48)

If the fundamental constraints are used to eliminate the diamter and the

wetted area and if the friction parameter is defined as

I

9/2

Kf a Cf !37 (49) j

the following relationsuip is obtained (Fig. 9): 1

, -u + 1 2 n 3-/2 [2a(1&2 - 6n - 3) + ,(16 n3 - 8 n + 3n+2) (50)2, /2 (2n - 1),

After the drag parameter and the thickness parameter are defined as j

. .D i7A 4 0- (51)
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they can be shown to obey functional relationships of the form (22) and (35),

respectively (Figs. 10 and 11).I
5.7. Given Volume and Wetted Area

For this case, the auxiliary constraints are written an

S3 M V - Conat . 0

1 (52)

#4 -
R S - Conet - 0

I
and after they are combined with the generalized optimum condition, one

I obtains the following relationship:

I~[ 2 (~~S - 8dY] + .6 (R) [8etV - 2dMs] - m~ 0(53)

I
If the fundamental constraints are used to eliminate the diameter and the

length from this expression, the exponent of the optimum power body can be

obtained from the relation

I 6n(6n2 - 3n - 1) + q,(22n3 - 23n2 + 5n + 2) , 0 (514)

For the particular case of the impact law, Eq. (54) yields a a 0.729; for

the Neton-Busemann law, the optimum exponent is n - 0.652. For the impact

law, the minimum drag per unit dynamic pressure and the associated thickness

ratio are given by
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D 7004+ C . 58.76 V (55) 3

For the Neton-Nsemann law, the analogous values are

2  V6 V2

Bore agea, the optimum exponent in independent of the friction coefficient

since the wetted area in prescribed; thus, the optimu shapes are the same 3
as those found when -nimizing the pressure drag only (Refs. 2 and 5).

5.8. Given Volume and Exponent

For the problem in which the volume and the exponnt of the power body

are gives, the additional constraints are written as

*3 a V - Coast -0 

(57)
#4 a n - Coast -0 

and the generalized optima condition becomes I

d(n + 1) .4 (2) - 2.9(n + 1) -L 0 ACf -0 (58)

After the thickness parameter is defined as I

K (59)
Cf
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and after simple manipulations are performed, Eq, (58) yields the relation-

ship (Fig. 12)

K 2(2n~1 (60)1 (,. n + 1)[2n3 + V(n3 - n j

I For a cone, this relationship becomes

I (

for both the impact case and the Nevton-Busexann case. If the drag per uait

dynamic pressure is combined with the expression for the optimum thickness

I and if the drag parameter is defined as

a 1 (62)

I f

I the following "relationship is obtained (Fig. 13):

I a W OR1 '(2 + 1) 213  (a + 1)2m3 + yta3 - 2 /9(3D f n+ 1 2(2n - J (63)

For these optimum bodies, the friction drag is eight-4dnthe of the total

drag. Furthermore, the drag parameter-exponent relationship exhibits a aL-

am for a a 0.729 in the impact case and n - 0.652 in the Newton-Busemann

case (Fig. 13). These special values are those which would be obtained if
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the constraint on the exponent of the power law were removed and the mini-

ml problem solved for given volume only.

I
I

I
I
I
I
I

I

I
I
I
I
I
I
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6. COMPARISON OF POWER-LAW SOLUTIONS AND VARIATIONAL SOLUTIONS

Now that the optimum power bodies have been determined, it in of inter-

Iest to compare their drag with that of the corresponding variational solu-

1. ttons where possible* In Ref. 1, the problem of the body of revolution having

minium drag in Newtonian hypersonic flow was solved for arbitrary boundary

Iconditions. It was found that the optimum body is composed of, at most,

three parts: a spike of zero thickness, a regular shape, and a cylinder

Idepending on the boundary conditions and the friction parameter. Since the

direct methods employed here have been confined to power bodies whose ex-

ponents are constant over the entire length (hence, spikes and cylinders

1have been excluded from this analysis), one should expect the drag of the

optimum power bodies to approximate that of the variational solutions only

Iin the case where the variational solution is composed of a regular shape

only* For solutions including spikes and cylinders, the divergence between

the drag of the optimum power bodies and that of the variational solution

I should depend on the relative length of the spike and/or the cylinder with

respect to that of the regular shape, preisumbly increasing as this relative

Ilength increases.

I With these ideas in mind, the drag of each optimum power body has been

compared with that of the related variational solution of Ref. 1 for the

j Newtonian case and for the range of values of the friction parameter cor-

responding to regular shapes only. If only the diamter is given, the opti-

mum power body is identical with the variational solution. If only the

volume id prescribed, the drag of the optimum power body in 1% greater than

that of the variational solution. If the diameter and length are given,

variational solutions consisting of regular shapes only exist in the friction
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parameter range 0 ! K f 9 0.5; in this range, the drag of the optimum power

body is no more than 0.1% greater than that of the variational solutions.

If the diameter and volume are prescribed, variational solutions consisting

of a regular shape only exist in te friction parameter range 0 ! Kf ! 0.0751

in this range, the drag of the optimum power body is at most 3% greater than

that of the variational solution. If the length and volume are given, vari-

ational solutions consisting of regular shapes only exist in the friction

parameter range 0 ! Kf < 8.03; in this range, the drag of the optimum power

body is at most 12% greater than that of the variational solution. In the

cases where the wetted area is prescribed, only the pressure drag can be

miimied due to the assumption of a constant friction coefficient; there-

fore, the absolute difference of the drag of an optimum power body and that

of the corresponding variational solution is independent of the friction

parameter. Hence, the relative difference decreases as the friction pa-

rameter increases. For instance, if the length and wetted areas are pre-

ecribed, the drag of the optimum power body is 13% greater than that of the 1
variational solution if the friction parameter is zero. However, if the

friction parameter were such that the friction drag ws twice the pressure

drag, the total drag penalty would be only 4.3%. In the case where the

volume and wetted area are prescribed, the drag of the optimum power body

is 14% greater than that of the variational solution if the friction pa-

rameter is zero. Finally, if the diameter and wetted area are given, the

optimum power body is identical with the variational solution so that their

total drags are the same. From this comparison, it appears that the drag

of the optimum power body approximates well that of the variational solu-

tion as long as the diameter is given. If the diameter is not prescribed,
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the approxmtion im generally poor-one hotable exception being the cae

wher-e onl the voluno is gi'en.

I

I

I
I
I
i
I
1
!
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In this paper, the problem of finding the slender power body of revo-

lution having minimum zero-lift drag in hypersonic flow is solved by di-

rect methods under the assumption that any two functions of the following

quantities are given: the diameter, the length, the wetted area, the volume,

and the exponent of the power law. Both the Newtonian impact law and the I
Newton-Bueemann law are used to determine the distribution of pressure co-

efficients, and a constant friction coefficient is assumed* After a gener-

alized optimum condition is found in determinantal form, particular problems I
are studied in detail. The analysis shows that the optimum shapes do not

depend on the friction coefficient if the wetted area is given but depend !

on it strongly if the wetted area is free. A comparison of the solutions i

of this report and the variational solutions of Refs. 1 and 2 is performed

for the Newtonian case and for the range of values of the friction parameter !

for which the variational solution consists of a single subarc only. It is

found that the drag of the power-law solutions is a good approximation of I
the drag of the variational solutions if the diameter is given. If the di- 1
ameter is not given, the approximation is generally poor - one notable ex-

ception being the case where only the volume is prescribed. 1
I
I
1
I
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